personal2

 Клетка — элементарная единица живой системы. Элементарной единицей она может быть названа потому, что в природе нет более мелких систем, которым были бы присущи все без исключения признаки (свойства) живого. Известно, что организмы бывают одноклеточными (например, бактерии, простейшие, некоторые водоросли) или многоклеточными.

Клетка обладает всеми свойствами живой системы: она осуществляет обмен веществ и энергии, растет, размножается и передает по наследству свои признаки, реагирует на внешние раздражители и способна двигаться. Она является низшей ступенью организации, обладающей всеми этими свойствами.

Специфические функции в клетке распределены между органоидами — внутриклеточными структурами, имеющими определенную форму, такими, как клеточное ядро, митохондрии и др. У многоклеточных организмов разные клетки (например, нервные, мышечные, клетки крови у животных или клетки стебля, листьев, корня у растений) выполняют разные функции и различаются по структуре. Несмотря на многообразие форм, клетки разных типов обладают поразительным сходством в своих главных структурных особенностях.

Первые наблюдения над клеткой. Изобретение микроскопа и его использование для биологических наблюдений позволило открыть неизвестный до тех пор мир.

Началом изучения клетки можно считать 1665 г., когда английский ученый Роберт Гук впервые увидел в микроскоп на тонком срезе пробки мелкие ячейки; он назвал их клетками. По мере усовершенствования микроскопов появлялись все новые сведения о клеточном строении растительных и животных организмов.

К началу XIX в. представления о клеточном строении живых организмов получили широкое распространение и признание. Однако что собой представляет клетка, как она устроена, какова ее роль в организме, как она произошла и множество других вопросов оставались без ответа.

Появление и развитие клеточной теории. Очень важное открытие в 30-х годах XIX в. сделал шотландский ученый Роберт Броун. Рассматривая в микроскоп строение листа растения, он обнаружил внутри клетки круглое плотное образование, которое назвал ядром. Это было замечательное открытие, поскольку оно создало основу для сопоставления всех клеток.

В 1838 г. немецкий ученый М. Шлейден первым пришел к заключению о том, что ядро является обязательным структурным элементом всех растительных клеток. Познакомившись с этим исследованием, Т. Шванн, соотечественник Шлейдена, был удивлен: точно такие же образования он обнаружил и в животных клетках, изучением которых занимался. Сопоставление большого числа растительных и животных клеток привело его к выводу: все клетки, несмотря на их огромное разнообразие, сходны — у них есть ядра.

Обобщив разрозненные факты, Т. Шванн и М. Шлейден сформулировали основное положение клеточной теории: все растительные и животные организмы состоят из клеток, сходных по строению.

Немецкий биолог Рудольф Вирхов в 1858 г. внес очень важное дополнение в клеточную теорию. Он доказал, что количество клеток в организме увеличивается в результате клеточного деления, т. е. клетка происходит только от клетки.

Клеточная теория явилась одним из великих открытий XIX в. Клеточная теория лежит в основе представлений о единстве всего живого, общности его происхождения и эволюционного развития.

Основные успехи цитологии (от греч. «цитос» — клетка) — науки о клетке (как, впрочем, и любой науки о природе) связаны с развитием методов исследования.

Благодаря дальнейшему усовершенствованию светового микроскопа и методов окраски клеток открытия следовали одно за другим. За сравнительно короткое время были выделены и описаны не только ядро и цитоплазма клеток, но и многие заключенные в них структурно-функциональные части — органоиды.

В настоящее время клетку изучают, применяя физические и химические методы исследования и новейшие приборы. Это и электронные микроскопы (рис. 9), дающие увеличение до 1 000 000 раз, и применение специальных красителей, позволяющих избирательно выявить клеточные структуры, и др. Для того чтобы изучить химический состав клетки или ее частей, применяют метод центрифугирования. Он основан на том, что разные клеточные органоиды имеют разные массу и плотность. При очень быстром вращении в ультрацентрифуге различные органоиды предварительно измельченных клеток располагаются слоями: внизу оказываются более тяжелые и плотные органоиды. Слои разделяют и органоиды изучают отдельно.

С приходом в науку о клетке физических и химических методов исследования было выявлено удивительное единство в строении клеток разных организмов, доказана неразрывная связь между их структурой и функцией. Благодаря этому основные положения клеточной теории, сформулированные более ста лет назад, были развиты и углублены.

Основные положения клеточной теории на современном этапе развития биологии формулируются так:

  1. Клетка является основной структурной и функциональной единицей жизни. Все организмы состоят из клеток, жизнь организма в целом обусловлена взаимодействием составляющих его клеток.
  2. Клетки всех организмов сходны по своему химическому составу, строению и функциям.
  3. Все новые клетки образуются при делении исходных клеток.

Остановимся кратко на положениях клеточной теории. Для всех клеток характерна способность к росту, размножению, дыханию, выделению, использованию и превращению энергии, они реагируют на раздражение. Таким образом, клетки обладают всей совокупностью свойств, необходимых для поддержания жизни. Отдельные их части не могут выполнять весь комплекс жизненных функций, только совокупность структур, образующих клетку, проявляет все признаки живого. Поэтому только клетка является основной структурной и функциональной единицей живых организмов. У многоклеточных организмов (растений, животных, грибов) отдельные клетки тесно и слаженно взаимодействуют друг с другом.

Клетки всех организмов имеют сходный химический состав (подробнее об этом сказано в § 1—6). Клетки животных, растений, грибов, в том числе и одноклеточных, имеют сходное строение. Все они имеют ядро и цитоплазму. В цитоплазме под световым микроскопом хорошо видны некоторые клеточные органоиды: вакуоли, хлоропласта, митохондрии — и различного рода включения: мелкие капли жира, гранулы крахмала, некоторые пигменты.

Строение большинства клеточных органоидов во всех клетках также очень сходно. И в то же время форма и размер клеток даже в пределах одного организма очень разнообразны, что зависит от специализации клетки и выполняемой ею функции. Они могут быть в виде многогранников, а также иметь дисковидную, шаровидную, кубическую форму. Например, клетки покровных тканей плоские и плотно прилегают друг к другу, нервные клетки вытянуты в длинные нити и т. д.

формы клеток

Различные формы клеток в связи с выполняемыми функциями.
1 - клетки эпителия кишечника; 2 - бактернии (кокки, кишечная палочка, спириллы со жгутиками на концах тела); 3 - диатомовая водоросль; 4 - мышечная клетка; 5 - нервная клетка; 6 - одноклеточная водоросль ацетобулярия; 7 - клетки печени; 8 - инфузория; 9 - эритроциты человека; 10 - клетки эпидермиса лука; 11 - жгутиконосец

Средние размеры клеток — несколько десятков микрометров, хотя бывают клетки меньших и больших размеров. Так, у человека имеются небольшие сферической формы лимфоидные клетки диаметром около 10 мкм и нервные клетки, тончайшие отростки которых достигают более 1 м.

Общность химического состава и строения клетки — основной структурной и функциональной единицы живых организмов — свидетельствует о единстве происхождения всего живого на Земле.